Solid state structure of the (2,4-dimethylpentadienyl)iron dicarbonyl dimer

Robert W. Gedridge, Alan T. Patton, Richard D. Ernst ${ }^{\star}$, and Huairang Ma
Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 (U.S.A.)
(Received November 4th, 1986)

Abstract

A solid state structural investigation of the $\mathrm{Fe}(2,4 \text {-dimethylpentadienyl)(} \mathrm{CO})_{2}$ dimer has revealed a structure quite similar to that of the known cis isomer of $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right]_{2}$. A lengthening of the $\mathrm{Fe}-\mathrm{Fe}$ bond by ca. $0.08 \AA$ can be correlated with substantial intramolecular steric crowding.

Pentadienyl ligands have been shown to be capable of imparting both thermal stability and chemical reactivity to their homoleptic metal complexes [1]. Given the rich chemistry associated with (cyclopentadienyl)metal carbonyl compounds [2], one would have to expect that (pentadienyl)metal carbonyl analogs should also prove interesting. In fact, quite unique reaction chemistry has already been observed for a molybdenum complex, in which an unusual trialkylation of a carbonyl ligand was brought about [3]. There are also indications that the structural aspects of such compounds will prove interesting, and these complexes do appear to possess somewhat different structural natures relative to their cyclopentadienyl analogs [4]. Thus, for a recently reported series of $\mathrm{Fe}\left(2,4-\mathrm{C}_{7} \mathrm{H}_{11}\right)(\mathrm{CO})(\mathrm{L}) \mathrm{X}$ complexes $\left(\mathrm{C}_{7} \mathrm{H}_{11}=\right.$ dimethylpentadienyl; $\mathrm{X}=\mathrm{I}, \mathrm{CH}_{3}, \mathrm{Fe}\left(2,4-\mathrm{C}_{7} \mathrm{H}_{11}\right)(\mathrm{CO})_{2}$ for $\mathrm{L}=\mathrm{CO} ; \mathrm{X}=\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$ for $\left.\mathrm{L}=\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, richer conformational behavior was indeed observed for the monometallic complexes, while the observation of a strong ESR signal for the dimeric species suggested that it probably possessed a somewhat weaker $\mathrm{Fe}-\mathrm{Fe}$ bond than in the related $\mathrm{C}_{5} \mathrm{H}_{5}$ dimer (the " Fp " dimer) [4]. While the conformational differences could readily be explained [5], it was not clear whether the weaker $\mathrm{Fe}-\mathrm{Fe}$ bonding might be predominately an electronic or a steric effect. In an attempt to clarify this situation, we have therefore determined the solid-state structure of $\left[\mathrm{Fe}\left(2,4-\mathrm{C}_{7} \mathrm{H}_{11}\right)(\mathrm{CO})_{2}\right]_{2}$.

Experimental

Single crystals of $\left[\mathrm{Fe}\left(2,4-\mathrm{C}_{7} \mathrm{H}_{11}\right)(\mathrm{CO})_{2}\right]_{2}$ were obtained by slowly cooling its concentrated solutions in toluene/hexane mixtures. A crystal of approximate di-
mensions $0.32 \times 0.35 \times 0.35 \mathrm{~mm}$ was selected and mounted in a glass capillary under nitrogen. Unit cell data were determined from a combination of oscillation photographs and standard Nicolet $\mathrm{P} \overline{1}$ software programs. Accurate cell constants were obtained from 15 centered reflections in the range $40^{\circ}<2 \theta<46^{\circ}$. using the Mo- K_{α} peak at 0.71070 A . The unit cell parameters are $a 8.4945(9)$, b $16.1118(13)$, c $13.3728(10) \AA . \beta 99.010(8)^{\circ}$, V $1807.7(3) \AA^{3}$ for $Z=4$ dimeric umirs. Symmetric $\theta-2 \theta$ scans having a width of 2° were employed, at rates of $1-2$ deg $/ \mathrm{min}$ out to 2θ 52°. Background intensities were estimated using the program CARESS [6]. Three standard reflections were monitored for every 97 reflections, and indicated a net decrease during data collection of 2% in intensity, for which a correction was applied.

A total of 3711 independent reflections were obtained. of which 2836 had $I>3 \sigma(I)$. Calculations were carried out using Strouse's programs [6]. and a weighting factor of $u=1 / \sigma\left(F_{0}\right)$ was applied. Absorption effects were treated numerically, for which a range in transmission factors of 0.5840 .639 was obtained. The crystal faces were indexed as (100). (100), (010), (010), (001), and (00), while $\mu=16.15 \mathrm{~cm}^{-1}$.

Reflections of the type $0 k 0$ were observed only for $k=2 n$, indicating either space group $P 2$; or $P 2_{1} / m$. The latter space group was clearly suggested by the

Table 1
Positional parameters for the non-hydrogen atoms of $\left[\mathrm{Fe}\left(2,4-\mathrm{C}_{-} \mathrm{H}_{11}\right)\left(\mathrm{CO}_{2}\right]_{2}\right.$

Alom	x	y	\cdots
$\mathrm{Fe}(1)$	0.22399(5)	$0.33107(2)$	(0.13251(3)
Fe(2)	$0.14995(5)$	$0.66895(2)$	$0.39877(3)$
C(1)	$0.3771(4)$	$0.4299(2)$	0.09743
C(2)	$0.3031(4)$	$0.3931(2)$	$0.0058(2)$
C(3)	$0.1365(4)$	$0.3785(2)$	-0.0167(2)
C(4)	$0.0223(4)$	$0.3934(2)$	0.047063
C(5)	$0.0616(4)$	$0.4321(2)$	0.4250
(6)	$0.4058(5)$	0.361363	-0.06856
C(7)	$-0.1457(5)$	$0.3627(3)$	0.01406
C(8)	$0.2870(4)$	0.354021	0.260136
C(9)	$0.3940(5)$	$02500(0)$	$0.1301(3)$
C(10)	$0.0774(5)$	$0.2500(0)$	0.173231
C(11)	$0.2797(4)$	$0.5676(2)$	$0.4796(3)$
C(12)	$0.1844(4)$	$0.6057(2)$	$0.54212)$
C(13)	$0.0196(4)$	$0.6218(2)$	6.5124(3)
C(14)	$-0.0710(4)$	$0.6076(2)$	0.41578
C(15)	-0.0040(5)	$0.5691(2)$	0.3369
C(16)	$0.2619(5)$	0.6359(3)	$0.6408(3)$
C(17)	-0.2406(5)	$0.6384(3)$	$0.3949(4)$
C(18)	$0.2637(4)$	$0.646 .3(2)$	9.3034,33
Cil9)	$0.3085(5)$	$0.7500(0)$	0.45743
C(20)	$0.0266(5)$	$0.7500(0)$	0.31236
O(8)	$0.3194(4)$	$0.3150(2)$	(0.34392)
O(9)	$0.5325(4)$	$0.2500(0)$	(11213)
O(10)	$-0.0375(4)$	$0.2500(0)$	0.21103
O(18)	$0.3376(4)$	$0.6269(2)$	0,2437(2)
O(19)	$0.4411(4)$	$0.7500(0)$	$0.5002(3)$
$\mathrm{O}(20)$	-0.0696(4)	$0.7500(0)$	0.238212

Table 2
Selected bond distances (\AA) and angles (deg) for $\left[\mathrm{Fe}\left(2,4-\mathrm{C}_{7} \mathrm{H}_{11}\right)(\mathrm{CO})_{2}\right]_{2}$

$\mathrm{Fe}(1)-\mathrm{Fe}\left(1^{\prime}\right)$	2.6125(6)	$\mathrm{Fe}(1)-\mathrm{C}(8)$	1.749(3)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.417(5)
$\mathrm{Fe}(2)-\mathrm{Fe}\left(2^{\prime}\right)$	$2.6116(6)$	$\mathrm{Fe}(1)-\mathrm{C}(9)$	1.951(3)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.419(4)
$\mathrm{Fe}(1)-\mathrm{C}(1)$	2.154(3)	$\mathrm{Fe}(1)-\mathrm{C}(10)$	1.940(3)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.408(4)
$\mathrm{Fe}(1)-\mathrm{C}(2)$	2.163(3)	$\mathrm{Fe}(2)-\mathrm{C}(18)$	1.754(3)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.413(5)
$\mathrm{Fe}(1)-\mathrm{C}(3)$	$2.158(3)$	$\mathrm{Fe}(2)-\mathrm{C}(19)$	1.950(3)	$\mathrm{C}(2)-\mathrm{C}(6)$	1.510(5)
$\mathrm{Fe}(1)-\mathrm{C}(4)$	2.153(3)	$\mathrm{Fe}(2)-\mathrm{C}(20)$	1.939(3)	$\mathrm{C}(4)-\mathrm{C}(7)$	1.508(5)
$\mathrm{Fe}(1)-\mathrm{C}(5)$	$2.151(3)$	$\mathrm{C}(8)-\mathrm{O}(8)$	1.156(4)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.403(4)
$\mathrm{Fe}(2)-\mathrm{C}(11)$	2.162 (3)	$\mathrm{C}(9)-\mathrm{O}(9)$	1.173(5)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.420(5)
$\mathrm{Fe}(2)-\mathrm{C}(12)$	2.162 (3)	$\mathrm{C}(10)-\mathrm{O}(10)$	1.168(5)	$\mathrm{C}(13)-\mathrm{C}(14)$	1.416(5)
$\mathrm{Fe}(2)-\mathrm{C}(13)$	$2.154(3)$	$\mathrm{C}(18)-\mathrm{O}(18)$	1.142(4)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.417(5)
$\mathrm{Fe}(2)-\mathrm{C}(14)$	2.164(3)	$\mathrm{C}(19)-\mathrm{O}(19)$	1.181(5)	$\mathrm{C}(12)-\mathrm{C}(16)$	1.519(5)
$\mathrm{Fe}(2)-\mathrm{C}(15)$	2.155(4)	$\mathrm{C}(20)-\mathrm{O}(20)$	1.181(5)	$\mathrm{C}(14)-\mathrm{C}(17)$	1.508(5)
$\mathrm{Fe}\left(1^{\prime}\right)-\mathrm{Fe}(1)-\mathrm{C}(8)$	102.22(12)	$\mathrm{C}(11)-\mathrm{Fe}(2)-\mathrm{C}(20)$	172.73(13)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	123.1(3)
$\mathrm{Fe}\left(1^{\prime}\right)-\mathrm{Fe}(1)-\mathrm{C}(9)$	47.97(9)	$\mathrm{C}(15)-\mathrm{Fe}(2)-\mathrm{C}(19)$	173.52(14)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	127.0(3)
$\mathrm{Fe}\left(1^{\prime}\right)-\mathrm{Fe}(1)-\mathrm{C}(10)$	47.69(8)	$\mathrm{Fe}(1)-\mathrm{C}(9)-\mathrm{Fe}\left(1^{\prime}\right)$	84.06 (17)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	122.3(3)
$\mathrm{C}(8)-\mathrm{Fe}(1)-\mathrm{C}(9)$	92.51(16)	$\mathrm{Fe}(1)-\mathrm{C}(10)-\mathrm{Fe}\left(1^{\prime}\right)$	84.63(17)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	119.1(3)
$\mathrm{C}(8)-\mathrm{Fe}(1)-\mathrm{C}(10)$	88.84(17)	$\mathrm{Fe}(1)-\mathrm{C}(8)-\mathrm{O}(8)$	174.03)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(6)$	117.6 (3)
$\mathrm{C}(9)-\mathrm{Fe}(1)-\mathrm{C}(10)$	93.61(13)	$\mathrm{Fe}(1)-\mathrm{C}(9)-\mathrm{O}(9)$	137.91(9)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)$	118.7(3)
$\mathrm{C}(1)-\mathrm{Fe}(1)-\mathrm{C}(10)$	174.14(13)	$\mathrm{Fe}(1)-\mathrm{C}(10)-\mathrm{O}(10)$	137.58(9)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(7)$	118.9(3)
$\mathrm{C}(5)-\mathrm{Fe}(1)-\mathrm{C}(9)$	172.30(14)	$\mathrm{C}(3)-\mathrm{Fe}(1)-\mathrm{C}(8)$	146.87(15)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	122.8(3)
$\mathrm{Fe}\left(2^{\prime}\right)-\mathrm{Fe}(2)-\mathrm{C}(18)$	101.98(12)	$\mathrm{Fe}(2)-\mathrm{C}(19)-\mathrm{Fe}\left(2^{\prime}\right)$	84.08(18)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	127.2(3)
$\mathrm{Fe}\left(2^{\prime}\right)-\mathrm{Fe}(2)-\mathrm{C}(19)$	47.96(9)	$\mathrm{Fe}(2)-\mathrm{C}(20)-\mathrm{Fe}\left(2^{\prime}\right)$	84.66(18)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	121.8 (3)
$\mathrm{Fe}\left(2^{\prime}\right)-\mathrm{Fe}(2)-\mathrm{C}(20)$	47.67(9)	$\mathrm{Fe}(2)-\mathrm{C}(18)-\mathrm{O}(18)$	176.0(4)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(16)$	119.0(3)
$\mathrm{C}(18)-\mathrm{Fe}(2)-\mathrm{C}(19)$	90.40(17)	$\mathrm{Fe}(2)-\mathrm{C}(19)-\mathrm{O}(19)$	137.83(10)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(16)$	118.1(3)
$\mathrm{C}(18)-\mathrm{Fe}(2)-\mathrm{C}(20)$	90.80(17)	$\mathrm{Fe}(2)-\mathrm{C}(20)-\mathrm{O}(20)$	137.58(9)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(17)$	118.8(4)
$\mathrm{C}(19)-\mathrm{Fe}(2)-\mathrm{C}(20)$	93.64(14)	$\mathrm{C}(13)-\mathrm{Fe}(2)-\mathrm{C}(18)$	147.37(15)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(17)$	119.4(4)

intensity distribution of the data set, and from the Patterson function, which contained a number of major peaks attributable to the presence of a mirror plane. The iron atom locations were determined from the Patterson map. Several near solutions could be obtained for the two iron atom locations. but while most peaks could be accounted for, there was always some discrepancy untl a solution was attempted in which both iron atoms had the same y coordinate. This solution resulted in the overlap of a number of varous iron-iron vectors and matched the Patterson map quite well. From this point, the structure solution proceded routinely. and all remaining non-hydrogen atoms could be located from difference Fourier maps. Except for $\mathrm{H}(15 \mathrm{~A})$ all of the non-methyl hydrogen atoms could be located, and all were placed in positions idealized for $d(\mathrm{C}-\mathrm{H})=0.95 \mathrm{~A}$. Hydrogen atom thermal parameters (U) were set to be equal to ca. 001 plus the equivalent isotropic U value for the carbon atom to which they were attached. Many of the methyl hydrogen atoms could be found, and all methyl hydrogen atom positions were included based on least-squares fits to tetrahedral geometrics. Final retmement. with anisotropic thermal paraneters for all non-hydrogen atoms. led to $R=0.040$ and $R_{w}=0.050$. A final difference Fourier map revealed a peak near each iron atom (0.80 and $0.56 \mathrm{c} / \mathrm{A}^{3}$), Pollowed by other peaks of $0.20 \mathrm{e} / \mathrm{A}^{3}$ or less. Pertinent bonding parameters are provided in Tables 1 and 2 . Tables of hydrogen atom parameters, anisotropic thermal parameters, least-squares plane information. Patterson function peaks, and the structure factor tables may be obtained through NAPS. No unusual intermolecular contacts were ohserved.

Results

The solid-state structure of $\left[\mathrm{Fe}\left(2,4-\mathrm{C}_{7} \mathrm{H}_{11}\right)(\mathrm{CO})_{2}\right]_{2}, \mathbf{1}$, is depicted in Figs. 1 and 2 for both independent dimers. Each dimer is situated on a mirror plane of symmetry which passes through the two bridging carbonyl ligands. and the two dimers are essentially identical. with only minor differences occurring between a few bond angles $\left[7^{*}\right]$. It can he seen that the dimers have adopted a configuration akin to the cis isomer of $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right]_{2}$ (1) [8]. The $\mathrm{Fe}-\mathrm{Fe}$ bond distances in 1 are dependent only on the iron atoms i coordinates and formally average 2.6120(4) A [9*]. To allow for possible systematic errors, however, a distance of $2.672(1)$ A will be assumed. This distance is much shorter than that of $3.138(3)$ A in $\left[\mathrm{Fe}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{CO})_{3}\right]_{2}$, which contains no bridging carbonyl ligands [10] but still significantly longer than the distances of $2.531(2)$ and $2.534(2)$ A observed in the cis [8] and trans [11] isomers of $\left[\mathrm{Fe}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right]_{2}$. respectively.

(I)

[^0]

Fig. 1. Perspective views and numbering schemes of the two independent $\left[\mathrm{Fe}\left(2,4-\mathrm{C}_{7} \mathrm{H}_{11}\right)(\mathrm{CO})_{2}\right]_{2}$ molecules. Each lies on a crystallographic mirror plane.

The pentadienyl ligands are positioned rather symmetrically with respect to the iron atoms. Thus, the average $\mathrm{Fe}-\mathrm{C}(1,5), \mathrm{Fe}-\mathrm{C}(2,4)$, and $\mathrm{Fe}-\mathrm{C}(3)$ bond distances are $2.156(2), 2.160(2)$, and $2.156(2) \AA$, respectively, compared to ca. $2.108(2) \AA$ in the $\mathrm{C}_{5} \mathrm{H}_{5}$ analogs. No distinction can be made between the internal and external pairs of delocalized $\mathrm{C}-\mathrm{C}$ bonds in the pentadienyl ligands, which average $1.416(2)$ and $1.412(2) \AA$, respectively, while the $\mathrm{C}-\mathrm{CH}_{3}$ bond distances average $1.511(3) \AA$. As has generally been observed, the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond angles involving the delocalized carbon atoms become smaller when a methyl group is located on the central atom, in this case by an average of 4.6° (127.1(2) vs. $\left.122.5(2)^{\circ}\right)$ [12].

The pentadienyl ligands are reasonably planar, although the uncharged carbon atoms lie out of the plane by an average of ca. $0.013 \AA$ in a direction toward the iron atom, while the 1,5 and 3 positions are bent out the other way, by averages of 0.004 and $0.018 \AA$, respectively. The methyl groups are located out of the ligand planes by an average of $0.154 \AA$ toward their iron atoms, corresponding to a bend of 5.8°. Similar bends take place for the central hydrogen atom ($0.02 \AA, 1^{\circ}$) and the exo

Fig. 2. Alternate view of the first dimer. A rotation around the Fe-Fe bond has been used to orient the terminal CO ligands more toward the viewer.
hydrogen atoms on the terminal carbon atoms ($0.25 \mathrm{~A}, 15^{\circ}$), while their endo counterparts are bent in the opposite direction $\left(0.68 \AA, 46^{\circ}\right)$. The iron atoms are situated an average of 1.530 A away from the pentadienyl ligand planes (cf., ca. $1.745(3) \AA$ for the $\mathrm{C}_{5} \mathrm{H}_{5}$ analogs).

The carbonyl ligands appear normal. The average Fe-C distances are 1.945(2) A for the bridging carbonyls and $1.752(2) \AA$ for the terminal ones. The respective average $\mathrm{C}-\mathrm{O}$ distances are $1.176(3)$ and $1.149(3) \mathrm{A}$. The parameters observed in the cis and trans forms of $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right]_{2}$ are statistically indistinguishable, with the exception of the $\mathrm{Fe}-\mathrm{CO}$ (terminal) distances, which averaged $1.917(4)$ and $1.910(5)$ \AA, respectively. The observation that the $\mathrm{Fe}-\mathrm{CO}$ (terminal). Fe Fe, and Fe C (pentadienyl) distances are all longer in the pentadienyl complex suggests greatly increased steric congestion (vide infra).

Despite the overall similarity of $\left[\mathrm{Fe}\left(2,4-\mathrm{C}_{7} \mathrm{H}_{11}\right)(\mathrm{CO})_{2}\right]_{2}$ to cis $-\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right]_{2}$. there are several significant differences. As noted above, increased steric interactions appear to be present in the former complex. for which the angle between the pentadienyl ligand plane perpendicular and the Fe Fe vector averages 154.3°, compared to only $135.5(3)^{\circ}$ for the analogous angle in the latter complex. In this regard, it can be noted that the $\mathrm{CH}_{3} \cdots \mathrm{CH}_{3}$ interactions between the opposite pentadienyl ligands average only $3.62 \AA$, compared to an expected van der Waals separation of $4.0 \AA$ [13]. However, the orientations of the carbonyl ligands 10 one another are similar to those in the cis (and trans) $\mathrm{C}_{5} \mathrm{H}_{5}$ dimers [14*]. Thus, the average values for the C (bridge) $-\mathrm{Fe}-\mathrm{C}($ bridge $)$ and C (bridge) $-\mathrm{Fe} \mathrm{C}(t) \mathrm{rminal})$ angles are $93.6(1)^{\circ}$ and $90.6(1)^{\circ}$ for $\left[\mathrm{Fe}\left(2,4-\mathrm{C}_{7} \mathrm{H}_{11}\right)(\mathrm{CO})_{2}\right]_{2}$, compared to $96.0(2)^{\circ}$ and $90.5(2)^{\circ}$, respectively, for the cis- $\mathrm{C}_{5} \mathrm{H}_{5}$ analog. A stightly greater butterfly angle is observed between the two $\mathrm{Fe}_{2} \mathrm{C}$ (bridge) planes of the former. 20.6° vs. 16°. and this is accompanied by a slightly larger $\mathrm{Fe}^{\prime}-\mathrm{Fe}$ C(terminal) angle, $102.1(1)^{\circ}$ vs. $100.0(2)^{\circ}$. respectively.

Discussion

The observation of a reasonably strong ESR signal for $\left[\mathrm{Fe}\left(2,4-\mathrm{C}_{7} \mathrm{H}_{11}\right)(\mathrm{CO})_{2}\right]_{2}$ in solution suggested that its metal-metal bond should be weaker than that in $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right]_{2}$. In accord with this expectation, the $\mathrm{Fe}-\mathrm{Fe}$ bond distance in the former complex is indeed longer, by ca. $0.08 \AA$, although it is of course not clear if this represents sufficient weakening of the $\mathrm{Fe}-\mathrm{Fe}$ bond to bring about the noticeable homolysis of the dimer.

Despite the clear similarity of the observed structure to that of cis[$\left.\mathrm{Fe}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right]_{2}$, such a relationship could not readily be appreciated a priori. even neglecting the possibility of observing the trans isomer. Thus theoretical studies have indicated that M (pentadienyl) L_{4} complexes should adopt a configura-

(II)
tion such as II [5,15], from which several potential structures could be derived. It is therefore interesting to note that the locations adopted by the three carbonyl ligands around a given iron atom are quite similar to those adopted in related M (pentadienyl) L_{3} structures (III), e.g., $\mathrm{Fe}\left(2,4-\mathrm{C}_{7} \mathrm{H}_{11}\right)(\mathrm{CO})_{2} \mathrm{I}\left[16^{*}\right]$. It would appear that the $\mathrm{Fe}-\mathrm{Fe}$ interaction exerts little stereochemical activity, despite the fact that in other

(III)
mono(pentadienyl) complexes, the locations of the other ligands are generally very well-defined.

As to the origin of the apparently weaker $\mathrm{Fe}-\mathrm{Fe}$ bond in $\left[\mathrm{Fe}\left(2,4-\mathrm{C}_{7} \mathrm{H}_{11}\right)(\mathrm{CO})_{2}\right]_{2}$, this clearly seems to be a steric influence. In this dimer, one not only observes a longer $\mathrm{Fe}-\mathrm{Fe}$ bond, but also significantly longer $\mathrm{Fe}-\mathrm{C}$ (pentadienyl) and $\mathrm{Fe}-\mathrm{CO}$ (terminal) bond lengths as compared to either $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right]_{2}$ structure. No clearly shorter $\mathrm{Fe}-\mathrm{C}$ bond distances were observed in the former complex to balance the other, longer bonds. A significant portion of the steric congestion seems to involve the opposing, symmetry-related methyl groups [17*]. Conceivably, an unmethylated pentadienyl ligand might bring about significant less steric interaction $\left[18^{*}, 19^{*}\right]$ and a shorter $\mathrm{Fe}-\mathrm{Fe}$ bond. On the other hand, the use of bulkier substituents, such as t-butyl, or the addition of substituents to the 3-position [20*] might significantly destabilize the observed form of the cis isomer, so that some other configuration, perhaps trans, would be adopted. Such possibilities will be addressed in the future.

Acknowledgements

R.D.E. expresses his gratitude for support of this research through a grant from the National Science Foundation.

References

1 R.D. Ernst, Acc. Chem. Res., 18 (1985) 56.
2 (a) J.P. Collman and L.S. Hegedus, Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley, CA, 1980. (b) C.M. Lukehart, Fundamental Transition Metal Organometallic Chemistry, Brooks-Cole, Monterey, CA, 1985.
3 M.S. Kralik, J.P. Hutchinson, and R.D. Ernst, J. Am. Chem. Soc., 107 (1985) 8296.
4 (a) H. Ma, P. Weber, M.L. Ziegler, and R.D. Ernst, Organometallics, in press. (b) G.M. Williams and D.E. Rudisill, J. Am. Chem. Soc., 107 (1985) 3357. (c) G.M. Williams, R.A. Fisher, and R.H. Heyn, Organometallics, 5 (1986) 818.
5 (a) T.A. Albright, P. Hofmann, and R. Hoffmann, J. Am. Chem. Soc., 99 (1977) 7546. (b) T.A. Albright, Acc. Chem. Res. 15 (1982) 149.
6 D.L. Packett, C.M. Jensen, R.L. Cowan, C.E. Strouse, and W.C. Trogler, Inorg. Chem., 24 (1985) 3578.

7 The only noticeable difference is that the terminal carbonyl ligand (C(18)) is located symmetrically on Fe(2) relative to the two bridging carbonyl ligands, whereas a slight wist has taken place for $C(8)$ on $\mathrm{Fe}(1)$, i.e, $\varangle C(8)-\mathrm{Fe}(1)-\mathrm{C}(9)=92.51(16)$ vs. $\Varangle C(8)-\mathrm{Fe}(1)-\mathrm{C}(10)=88.84(17)^{\mathrm{c}}$.
8 R.F. Bryan. P.T. Greene, M.]. Vewlands, and D.S. Field, I. Chem. Soc. (A). n1970, 3068
9 When average values are cited the accompanying esd is that for the mean value determined by dividing the average standard deviation for the data by the square root of the number of data.
10 C.F. Putnik, JJ. Weher, GD. Sucky, M.J. D'Anello, Ir. BA. Smasky If Kimer and EI. Muetterties, J. Am. Chem. Sor. 100 (1978) 4107
11 (a) O.S. Mills, Acta Cryst. 11:1958) 620. (b) R.F. Bryan and PT, ©reme. Shem Soc. A). (1970) 3064.

12 R.D. Emst, Struct. Bond, Berlin 57 (1984) 1.
13 L. Pauling. The Nature of the Chemical Bond, 3nd Ed. Cornell Univerity Press, Thaca. New York. 1960, Ch. 7.
14 To a large extent, the only major difference between 1 and the e $\mathrm{r}_{-} \mathrm{C}_{5} \mathrm{H}_{5}$ analog inwolves the greater twist of the pentadienyl ligand by a. 18.8° relative to the Fe-fe bond. Thas, white the arrangements of the two $\mathrm{Fe}(\mathrm{CO})_{2}$ units seemed relatively unchanged relative to one another. the $18.8{ }^{\circ}$ pentadieny! tilt results in a smaller angle between the pentadienyl ligand perpendicular and the terminat $C O$ ligands (averages of $124.41(3) \times s, 103.1^{\circ}$) and a larger angle between the above perpendicular and the bridging CO ligands (averages of $123.2(2) \mathrm{vs} .131 .6^{\circ}$).
15 T.A. Albrigh, R. Hoffmann. Y. C. Tse and T. DOttavio, J. Am. Chem. Soc. 101 (1979) 3812.
16 (a) The angles formed between the pentadienyl perpendicular and the $\mathrm{Fe}-\mathrm{f}$ and two Fe CO vectors in $\mathrm{Fe}\left(2,4-\mathrm{C}_{3}, \mathrm{H}_{11}\right)(\mathrm{CO})_{2} 1$ are $1559,133.3$. and $106.7^{\circ}[16 \mathrm{~b} /$. These values are smilar to those observed herein [14]. (b) H. Ma, p. Weber, MI. Ziegler and R D. Erns Organomathes o (1987) 854.

17 Other possibly important non-honded contacts take place between the rarbonyl and pentadieny ligands. Fach bridging carbonyl engages in close non-bonded contacts with the proximate pentadieny carbon atoms in the 1 and 2 positions, and with the 2 -substituted methy group. These fall in the respective ranges of $2.86-2.88 \mathrm{~A}, 2.93-2.97 \mathrm{~A}$, and $3.18-3.22 \mathrm{~A}$ The terminat cartenyls engage in close contacts with the adjacent pentadienyl carbon stoms in the 1.5 powitions These four confacts fall in the range of $2.60-2.71 \mathrm{~A}$.
18 (a) Cyclohexadienyi and cycloheptadienyl analogs are known, which hould be muth less crowded [180-e]. (b) F.M. Chaudhari and P.L. Pauson, J. Organometal. Chem., S (196ti) 7. (c) M.A. Hashmi. J.D. Munro. P.L. Pauson, and SM. Williamson. J. Chem. Soc. (A), (1967) 240. (d) B.R. Reddy and J.S. McKennis. J. Organometal. Chem., 182 (1979) C 61 (e) HA Bockmenten and A W. Parkins I Chem. Soc. Dation Trans., (1981) 262.
19 (a) In fact, in some Mo(pentadicny) $(\mathrm{CO})_{3}$ dimer analogs [19b, $]$ one does observe Mo Vo distances similar to $\left[\mathrm{MOC}_{5} \mathrm{H}_{5} \text {)(CO) }\right]_{2}$ [10d.el. (b) P.F. Lindley and O.S. Muls, J. Chem. Soc. (A) (1069) 1286. (c) F.A. Cotton, P. Lahuerta, and B.R. Stults, Inorg. Chern. 15 (1976) 1866. (d) R.D. Adams, D.M Collins, and F.A. Cotton, Horg Chem. 13 (1974) 1086 (e) FC. Wikon and DP Shoemaker, 3. Chem. Phys., 27 (1957) 809.
20 Using the observed geometry for the $\left\{\mathrm{Fe}\left(2,4-\mathrm{C}_{7} \mathrm{H}_{11}\right)(\mathrm{CO})_{2}\right]_{2}$ dimer one cane enmate a $\mathrm{CH}_{3} \cdots \mathrm{CH}_{3}$ separation of only ca. 2.7 A for opposing 3 -methyl substituents.

[^0]: * This and other references marked with an asterisk indicates a note occurring in the list of references.

