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Abstract 

A solid state structural investigation of the Fe(2,4-dimethylpentadienyl)(CO), 
dimer has revealed a structure quite similar to that of the known cis dsomer of 
[Fe(C,H,)(CO),],. A lengthening of the Fe-Fe bond by ca. 0.08 A can be 
correlated with substantial intramolecular steric crowding. 

Pentadienyl ligands have been shown to be capable of imparting both thermal 
stability and chemical reactivity to their homoleptic metal complexes [l]. Given the 
rich chemistry associated with (cyclopentadienyl)metal carbonyl compounds [2], one 
would have to expect that (pentadienyl)metal carbonyl analogs should also prove 
interesting. In fact, quite unique reaction chemistry has already been observed for a 
molybdenum complex, in which an unusual trialkylation of a carbonyl ligand was 
brought about [3]. There are also indications that the structural aspects of such 
compounds will prove interesting, and these complexes do appear to possess 
somewhat different structural natures relative to their cyclopentadienyl analogs [4]. 
Thus, for a recently reported series of Fe(2,4-C,H,,)(CO)(L)X complexes (C,H,r = 
dimethylpentadienyl; X = I, CH,, Fe(2,4-C,H,,)(CO), for L = CO; X = C(O)CH, 
for L = P(CH,)&H,), richer conformational behavior was indeed observed for the 
monometallic complexes, while the observation of a strong ESR signal for the 
dimeric species suggested that it probably possessed a somewhat weaker Fe-Fe 
bond than in the related C,H, dimer (the “Fp” dimer) [4]. While the conforma- 
tional differences could readily be explained [5], it was not clear whether the weaker 
Fe-Fe bonding might be predominately an electronic or a steric effect. In an 
attempt to clarify this situation, we have therefore determined the solid-state 
structure of [Fe(2,4-C,H,,)(CO),],. 

Experimental 

Single crystals of [Fe(2,4-C,H,,)(CO),], were obtained by slowly cooling its 

concentrated solutions in toluene/hexane mixtures. A crystal of approximate di- 
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mensions 0.32 x 0.35 x 0.35 mm was selected and mounted in a glass capillary 
under nitrogen. Unit cell data were determined from a combinatron of oscillation 
photographs and standard Nicolet Pi software programs. Accurate cell constants 
were obtained from 15 centered reflections in the range 40” s: 2@ ( 46 “. using the 
Mo-K, peak at 0.71070 k. The unit cell parameters are (I X.494%9). in 16.1 11X( 17). 0 
c 13.3728(10) A. ,8 99.010{8)“. 1,~ 180?.7(3) li3 for Z =; 4 dimrric unit\. Symmetric 

N- 2B scans having a width c,F 2O were employed, at rates ot 1 -1 dq,,~ min out to 2W 

52”. Background intensitb \$sere estimated usin g the progt-am (‘ARtiS [6]. Three 
standard reflections were mc)nitored for every Y7 refIcctic)ns. and indicated ‘1 net 
decrease during data collection of 2’7 in intensity. for whi~~h ;i ;:iirreCtiiln \v;t 

applied. 
A total of 3711 independent reflections were obtained. of \vhich 28%~ had 

I > 30(Z). Calculations were carried out using Strouse’s program< [h]. and H 

weighting factor of 1% = I,, cj(Fi,) was applied. Absorption effects \l’ere treated 
numerically, for which a range in transmission factors of 0.584 0.6.29 \vas obttiined. 
The crystal faces were indexed as 1100). CiOO), (OIO?, iCli0). ii)OI! i. and tOi)?). \f,hilc 
i;- =z 16.15 cm -‘. 

Reflections of the type OliO were observed only for X ..-. Z/r, tndicating either 
space group P 2 i or f”2, ,‘w. ‘The latter space group wiry clearI>. augg,Med 17; the 

Fositional parameters for the non-hT,drogcn atoms of [Fe(2.4-C -H,, )(i’Oi: E. 

ntorn \ I’ 
----._-.-_-.--.___.___... .._~_.___.__._ .___-. _. 
f+(l) 0.22399(5) K33107(2) iI.l325l(?i 

l‘e(2) 0.14995(5) (M6895(2) i).?9877(7 1 

c‘(l) 0.37?1(4) 0.4299(: I O.i)Y74( 1 ‘r 
t-‘( 2 ) 0.3031(4, 0.3931(:) i!.Oil5’((1; 

C’( 7) 0.1365(43 O.?7X5(2~ (1,!)1@7(::i 

(‘(4) 0.(122.1(4! (,.39?4(2) i~(I4~1,,.~: 

C(5) iI.O616(4) cl.4?21(2, \i.]J’:(Ij 

C’(h) 0.4058(5, 0.36l.i(3? (1 !l(,ic’( 2 / 

(‘(7) -0.145?(5) 0..%27( 3 I !r.‘Il36( i! 

C’( 8 ) 0.2870(4) 0.154O(?l i,?,f,li3( .? , 

C’(9) 03Y4O(5) 0 t500(0) (1 2?!ii( JJ 
(‘(IO) O.C1774( 5 i 0.7500~0) i!.;‘:.JL(;i 
c-(11) 02797(4, 0.5676( 2 i 0.47Y(q.7 ’ 
(.‘( 12) 0.1844(4 i 0.6057(2 1 :1w~!(‘; 
CC13) 0.01%(4; 0.6218(3, il..?i.!Jc.ii 

Ci14) o.O:lo(‘+i O.h!Uh(?i 0.4i ,i’r ,i! 

C(lS) - (I.004015 j KS691(2) ( !..ijW( a! 
cyl6i &X)19(5) O.h359(.J1 t L64hii( .J / 
c‘(l7) -0.2406(4) 0.63X4(1) 0 IY4%4i 
C!18) O.?h.~7(4) 0.6463(2) i qo.Ll( i j 
(.( 19) 0.308.5(51 0.750(~~0~ 0.4.~“‘&:1: 

c‘(20) O.l)?66(5) lr.:400(0) l1..X;2$ ti 

CXX) 0.3194(4, O..i750(1) (J-34 I’( ‘1 

I)( 9 ) 0.5 ci(4) 0.2WO(O~ (!.I ‘::(;, 

(ItlO) .- 0.037.5(41 ().2sIu(ol it.:I!ly?) 
Q18) 1).1376(41 0.6’69(2) i;.‘43l)i?.) 

0(19) (I.441 l(4) O.i5iJO(O) 0 jOKl( 3, 

0120) -- (J.U696(4) 0.7’00((!) fia?.-w’i ‘1 - -/ 
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Fig. 1. Perspective views and numbering schemes of the two independent [Fe(2,4-C,H,,)(CO),], 

molecules. Each Lies on a crystallographic mirror plane. 

The pentadienyl ligands are positioned rather symmetrically with respect to the 
iron atoms. Thus, the average Fe-C(l,5), Fe-C(2,4), and Fe-C(3) bond distances 
are 2.156(2), 2.160(2), and 2.156(2) A, respectively, compared to ca. 2.108(2) A in 
the C,H, analogs. No distinction can be made between the internal and external 
pairs of delocalized C-C bonds in the pentadienyl ligands, which average 1.416(z) 
and 1.412(2) A, respectively, while the C-CH, bond distances average 1.511(3) A. 
As has generally been observed, the C-C-C bond angles involving the delocalized 
carbon atoms become smaller when a methyl group is located on the central atom, 
in this case by an average of 4.6’ (127.1(2) vs. 122.5(2)“) [12]. 

The pentadienyl ligands are reasonably planar, although the uncharged carbon 
atoms lie out of the plane by an average of ca. 0.013 A in a direction toward the iron 

atom, while the 1,5 and 3 positions are bent out the other way, by averages of 0.004 
and 0.018 A, respectively. The methyl groups are located out of the ligand planes by 
an average of 0.154 A toward their iron atoms, corresponding to a bend of 5.8”. 
Similar bends take place for the central hydrogen atom (0.02 A, 1”) and the exo 

Fig. 2. Alternate view of the first dimer. A rotation 
terminal CO ligands more toward the viewer. 

around the Fe-Fe bond has been used to orient the 
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hydrogen atoms on the terminal carbon atoms (0.25 A. 15” ). nhiie their et& c 
counterparts are bent in the opposite direction (0.68 A, 46” j. The iron atoms are 
situated an average of 1.511) A away from the pentadienvi ligand planes lit’.. ~a. 
1.74X3) A for the Ci Hi analogs j. 

The carbonyl ligands appe:ir normal. The average Fe<” distances arc 1.345(2) .4 
for the bridging carhonyis and 1.752(Z) .\ for the terminal ones. The respe<tiv.~ 
average C 0 distances arc 1.176(3) and 1.149(3) A. ‘Ihe parameters o!?xerved in the 

cis and itwr,~ forms of [Fe(C,f-I, )(c’Oj,], are statistically incii~tir:~uisl_1_ible. with the 
exception of the F-e-CO (twninal) distances. which averaged i .91 7t-1: :jnd 1.910(5j 
A, respectively. The observation that the Fe--CO (termin~i). F’c I:*. ;rnd Fee 
(pentadienyl) distances arc all longer in the pcntadirn\.l cc;utplc~ su;rgcsts grcatb 
increased steric congestion (Lide infraj. 

Despite the overall similarity of [Fe(2.4-C7 Hi, )(COj2] ;1 t 0 c~r.c-[F-‘~((‘,l-I,)~C‘O).j~. _ _ 
there are several significant differences. As noted abovc, increased stcriz intcractiona 
appear to be present in the former complex. l‘c>r ahich rhc angle hzlvvecn the: 
pentadienyl ligand plane perpendicular and the Fr F< \ector ;;i\wages 154.3”, 
compared to only 135.5(3)” for the analogous angle in the latter complex. In this 
regard. it can be noted that the C’H, (‘I-1, interaction> between the opposite 
pentadienyl ligands average only 3.62 A, compared to an expr’ited v,rn der Weals 0 
separation of 4.0 A [13]. Hovtcver. the orientations of the carbonv! llgallds 10 onr 
another are similar to those in the c,i.r (and fr(u7s ) C‘cH., ciimcr~ [ 13" 1. Theta, the 

average values for the C( bridge)-Fe- C’(bridgr) and c‘( bridge)-~ 1’6 i ‘i tcrrninal j a~i- 
glea are 93.6( 1)” and 90.6(I)” for [Fe(:!.4-(‘-,~i,,)((‘t),j, j - .: ccrnl]3arec~ IL1 %.0(1) r 
and 90.5(2) O. respectively. for the (,is-C’,H, analog. A slightly grrarcr hutterfl~ 
angle is observed between the two Fe,C(bridgc) plant:, of the former, .X.6” vs. 16 c, 
and this is accompanied bk a slightly Inrgrr Fe’ ~Fc cl‘(rcrmina~ ;tnpi~~, 11)?.1! I )“ 
ix. 100.0(2) O. respecti vel!. 

Discussion 

The observation of a reasonably strong ESR signal for [Fe(2.4-C‘-,H,, )(COjl], in 
solution suggested that its metal-metal bond should be weaker than that in 
[Fe(f,Hi)(CO)J,. In accord aith this eqectation, the Fc I-‘r bond distance rn the 
former complex is indeed longer. by ca. 0.08 A. although it i \. of i’OUis.? not ctt’ar if 
this represents sufficient wakening of the Fc -Fe bond to bring ahour the tl<lticc;‘- 
able homolysis of the dime; 

Despite the clear similarity of the observed i;tructurc I<, that of (YS- 
[Fe(CiH,)(CO),],, such a relationship could not readily be appreciated a priori. 
even neglecting the pos&ility of observing the rruns isomer. Thus. theoretical 
studies have indicated that hI(pentadienvl)L, complexes should adopt :j configura- 

(II) 
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tion such as II [5,15], from which several potential structures could be derived. It is 
therefore interesting to note that the locations adopted by the three carbonyl ligands 
around a given iron atom are quite similar to those adopted in related M(pentadi- 

enyl)L, structures (III), e.g., Fe(2,4-C,H,,)(CO),I [16*]. It would appear that the 
Fe-Fe interaction exerts little stereochemical activity, despite the fact that in other 

mono(pentadieny1) complexes, the locations of the other ligands are generally very 
well-defined. 

As to the origin of the apparently weaker Fe-Fe bond in [Fe(2,4-C,H,,)(CO),],, 
this clearly seems to be a steric influence. In this dimer, one not only observes a 
longer Fe-Fe bond, but also significantly longer Fe-C (pentadienyl) and Fe-CO 
(terminal) bond lengths as compared to either [Fe(C,H,)(CO),], structure. No 
clearly shorter Fe-C bond distances were observed in the former complex to 
balance the other, longer bonds. A significant portion of the steric congestion seems 
to involve the opposing, symmetry-related methyl groups [17*]. Conceivably, an 
unmethylated pentadienyl ligand might bring about significant less steric interaction 
[18*,19*] and a shorter Fe-Fe bond. On the other hand, the use of bulkier 
substituents, such as t-butyl, or the addition of substituents to the 3-position [20*] 
might significantly destabilize the observed form of the cis isomer, so that some 
other configuration, perhaps tram, would be adopted. Such possibilities will be 
addressed in the future. 
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